

Increasing biomethane availability in the market

Ari Suomilammi

Suomen Kaasuyhdistys 1.11.2023

Gasum

Gasum – a Nordic gas sector and energy market expert

We offer cleaner energy and services to help our customers to reduce their own carbon footprint as well as that of their customers.

Together with our partners, Gasum promotes development towards a carbon-neutral future on land and at sea.

Our services and solutions are used in maritime, road transport, industry and energy production.

Revenue €2,722.5 million

Balance sheet total €1,947.3 million

Personnel* 321

Energy products Biogas, LBG, Natural gas, LNG, Windpower, Power

Services

Gas filling station network, **Bunkering services for** maritime transport, **Energy Market Services, Portfolio Management** Services, Trading services, **Circular Economy Solutions**

*in 2022

Operating Environment in the Nordic Biomethane Ecosystem

- Actions are required to achieve environmental targets
- Demand for low emission energy solutions is a new standard
- Some incentives are already in place, right mechanism enables transition
- Geopolitical situation and war in Ukraine is putting additional pressure on gas deliveries to Europe
- Huge market potential in Nordice -90% by 2035 with total energy consumption 750 TWh/a

Demand for biomethane is rapidly increasing and European markets are merging

The Gas Ecosystem serving Market Growth

5

Gasum's Biomethane 2022 in numbers:

1.7 TWh

of biomethane delivered to customers including **775 GWh** of Gasum's own production. That's **65,700** times around the globe in a gas-powered car or **170,000** homes heated for a year.

1 million tons

of different types of waste (**biowaste, manure, sewage sludge**) managed through biogas production process.

That's **20,000 truckloads**

of waste.

At the same time, we produced **940,000 tons** of recycled nutrients.

444,000 tons

of CO₂eq emission savings for our customers with biogas. This equals the carbon footprint of about **65,000** average EU citizens.

Our goal is to reach a cumulative reduction of **1.8 million tons** of carbon dioxide emissions by 2027.

444,000

Target 1.8 million

Biogas production, plants & projects – Overview

Gasum

GÖTENE PLANT

Planned capacity: 133 GWh_H LBG Extended capacity: 55 GWh_H CBG -> LBG

Planned feedstock:

- 400 000 t/a liquid and solid manure, food product residues
- 350 000 t/a fertilizer back to farmers, rest to open market
- All in cooperation with regional and local partners

Time schedule

- Construction finalized summer 2024
- Start commercial production Dec 2024
- Full production late Q1-2025

Investment:

- Total: 54,6 M€
- Investment support: 15 M€
- Net investment: 39,6 M€

<u>VIDEO</u>

Biomethane Production in the Nordics 2015 - 2021

- Realistic feedstock potential 40 TWh in the Nordics (maximum 75 TWh)
- Biogas production in Nordics added up to approximately 11 TWh in 2021 (more than double since 2015)
- Fertilizer and nutrient recycling through reuse → non-existent market

Year/GWh	Finland	Norway	Denmark	Sweden	Nordics	EU
2021	907	700	7 279	2 266	11 152	196 000
2020	987	1 000	5 939	2 161	10 087	191 000
2019	630	400	4 509	2 111	7 650	166 000

Reference: European Biogas Association (Values reported as GCV)

27.9.2023 ARI SUOMILAMM

9

DEMAND FOR BIOMETHANE IS INCREASING AND REQUIRES MORE FEEDSTOCK

Feedstock is the main biomethane cost driver

Energy market changes affects directly to the feedstock value/price

- Transport cost from fuel price
- Gas value from TTF
- Gas value from Certificate markets
- Digestate cost/revenue from nutrient value

Competition on feedstock has become fierce

Feedstock cost, actual and forecast

12

Feedstock type impact

 Feedstock alternatives and volumes for a biomethane production of 120 GWh/a.

Feedstock material	Dry matter	Methane potential	Volume for 120 GWh	Logistics
	(% of WW)	(Nm3 CH4/ton WW)	(tonnes WW)	(# of trucks/day)
Liquid cow manure	8	13	891 266	81
Sewage sludge - dewatered	25	57	209 150	19
Biowaste	30	108	•• 111 111	10
Salmon silage	30	151	79 224	7
Grain Residues (husks etc)	85	227	52 816	5

- Logistical boundaries with the feedstock alternatives:
 - \circ Local: <30 km • Regional: <200 km
 - National: <500 km

The CO₂ Emission Impact

- CO₂ emission reduction calculations based on the REDII directive (ref. fossil traffic fuel).
- Produced and delivered liquified biomethane at mentioned annual volumes (GWh/a).
- According to REDII: Liquid manure -206% and biowaste -86%.
- Mixture will allow/induce a variation in CO₂ emission impact.

The Capex Impact

 Industrial size bio-methane production brings CAPEX/MWh to a more feasible level with clear advantage in respect to OPEX levels

The OPEX Impact

- Feedstock logistics with some benefit from optimized mixture arrangements (especially larger plants)
- Personnel costs could benefit from larger production units, since similar FTE manning needed.
- Upgrading and Liquification benefits from scaling effect
- Utilities largely impacted by scaling effect.
- Note:
 - Production of Liquified Biomethane (LBG)
 - w/o national production subsidy.

CASE MANURE FEEDSTOCK

MANURE FEESDTOCK SOURCING MODEL

The "Bio-Refinery" Impact

The "Bio-Refinery" Impact

INCREASING BIOMETHANE YIELD

Use of carbon dioxide potential – various possibilities

CO₂ POTENTIAL OF GASUM BIOGAS TODAY

All CO_2 in produced biogas: 114 000 tn/a

- 40 000 tn/a at > 95 % CO_2 conc.
- 64 000 tn/a at $\sim 15 \% \text{CO}_2$ conc.
- 10 000 tn/a no current CO₂ stream (no upgrading)

*Note that potentials are indicative maximum potentials – actual production is depending on operation, own biogas use etc.

Gasum biogas plant

Gasum upgrading plant

Gasum biogas plant under construction

CO₂ market is under development

PERMANENT REMOVAL CREDIT PRICES ARE HIGH & DIVERSE

- There are various ways of to remove CO2, but only handful of emerging technologies that can remove carbon permanently
- CO2 removal prices depends on the type of removals and the technology
- Biogenic CO2 has higher value compared to the CO2 of fossil origin
- Currently high prices are seen, and they are likely to drop when volumes traded in the market are increasing

Source: AFRY 2023:Carbon removal – where will credit prices go next?

https://afry.powerappsportals.com/AFRYCarbonRemovalsWebinar/#msdynttrid=cjUbooIl2Dpo82D2q4Vn8Tjw_x5_7b9j8Vv11l0pClA

CO₂ to methane

- Gasum's existing plants and projects in execution phase enables additional 650 GWh/a of synthetic biomethane production with P2G technology
- Increase of biomethane production by 65%
- Total electricity need for electrolysis for hydrogen production sums up to ~1100 GWh/a → exposure to OR benefit from electricity price volatility
- Biomethane production costs extremely dependent on electricity price, rough range 150 – 200 €/MWh

Total	Biomethane	Synthetic biomethane	
Existing & execution projects	1000	650	GWh/a
Total		1650	GWh/a

ARI .9.2023

28

SUOMILAMM

CO₂ content impact

- Depending on upgrading technology, CO₂ content varies in exhaust; membrane and amine scrubber >95%, water scrubbing ~15%
- CO₂ content sets limitations to usage:
 - Lower volume content CO₂ is less feasible to be separated from exhaust gas flow \rightarrow methanize
 - High volume content CO_2 can be utilized \rightarrow direct use

1. Water scrubbing

- Proven, robust technology
- Product gas quality not high enough for liquefaction
- Quite high methane slip, ~1% low quality CO₂ stream

2. Amine scrubbing

- High upgrading quality >99% suitable for liquefaction
- Low methane slip, <0.5%, high quality CO₂ stream
- **Requires heat**

CO₂ to methane or direct use, depending on content

Methanization

- Instead of using low content CO₂ from water scrubbing in P2G production, methanization could be used in increase methane content of raw gas
- Higher raw gas methane content enables to increase biomethane volumes with existing upgrading units
- In Gasum's existing plants, potential increase of biomethane production is be estimated to be ~35%

Direct use

- High CO₂ content flue gas from upgrading is feasible for direct use
- Demand for biogenic CO₂ is increasing
- Liquid CO₂ production cost is roughly in the range of 100 - 150 €/t
- The market value of CO₂ ton is expected to be higher, either in physical or in the form of Carbon Dioxide Removal credits ("CDR-credits")

27.9.2023 ARI SUOMILAMMI

Keys to increased biomethane availability **Summary**

- 1. Continue developing the gas distribution infrastructure
- 2. Continue to expand cost efficient biomethane production
- 3. Continue to develop the biofertilizer/nutrient market
- 4. Utilize resources fully with new possibilities. Revenues from CO₂ can compensate the increased feedstock costs and increase biomethane availability
- → Secure biogas/biomethane availability to end-users in a sustainable way

